Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 16(1)2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38258082

RESUMO

Delivering bioactive proteins into cells without carriers presents significant challenges in biomedical applications due to limited cell membrane permeability and the need for targeted delivery. Here, we introduce a novel carrier-free method that addresses these challenges by chemically modifying proteins with an acid-responsive cell-penetrating peptide (CPP) for selective intracellular delivery within tumours. Cytochrome C, a protein known for inducing apoptosis, served as a model for intracellular delivery of therapeutic proteins for cancer treatment. The CPP was protected with 2,3-dimethyl maleic anhydride (DMA) and chemically conjugated onto the protein surface, creating an acid-responsive protein delivery system. In the acidic tumour microenvironment, DMA deprotects and exposes the positively charged CPP, enabling membrane penetration. Both in vitro and in vivo assays validated the pH-dependent shielding mechanism, demonstrating the modified cytochrome C could induce apoptosis in cancer cells in a pH-selective manner. These findings provide a promising new approach for carrier-free and tumour-targeted intracellular delivery of therapeutic proteins for a wide range of potential applications.

2.
J Med Chem ; 66(9): 6160-6183, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37098275

RESUMO

We have previously discovered an amine-containing flavonoid monomer FM04 as a potent P-glycoprotein (P-gp) inhibitor (EC50 = 83 nM). Here, a series of photoactive FM04 analogues were synthesized and used together with liquid chromatography-tandem mass spectrometry (LC-MS/MS) to identify the FM04-binding sites on P-gp. Point mutations around the photo-crosslinked sites were made for verification. Together with the results from mutational studies, molecular docking, and molecular dynamics simulations, it was found that FM04 can interact with Q1193 and I1115 in the nucleotide-binding domain 2 (NBD2) of human P-gp. It was proposed that FM04 can inhibit P-gp in 2 novel mechanisms. FM04 can either bind to (1) Q1193, followed by interacting with the functionally critical residues H1195 and T1226 or (2) I1115 (a functionally critical residue itself), disrupting the R262-Q1081-Q1118 interaction pocket and uncoupling ICL2-NBD2 interaction and thereby inhibiting P-gp. Q1118 would subsequently be pushed to the ATP-binding site and stimulate ATPase.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Flavonoides , Humanos , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Sítios de Ligação , Cromatografia Líquida , Flavonoides/farmacologia , Flavonoides/química , Simulação de Acoplamento Molecular , Nucleotídeos/metabolismo , Espectrometria de Massas em Tandem
3.
Int J Mol Sci ; 24(5)2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36901808

RESUMO

The modulation of P-glycoprotein (P-gp, ABCB1) can reverse multidrug resistance (MDR) and potentiate the efficacy of anticancer drugs. Tea polyphenols, such as epigallocatechin gallate (EGCG), have low P-gp-modulating activity, with an EC50 over 10 µM. In this study, we optimized a series of tea polyphenol derivatives and demonstrated that epicatechin EC31 was a potent and nontoxic P-gp inhibitor. Its EC50 for reversing paclitaxel, doxorubicin, and vincristine resistance in three P-gp-overexpressing cell lines ranged from 37 to 249 nM. Mechanistic studies revealed that EC31 restored intracellular drug accumulation by inhibiting P-gp-mediated drug efflux. It did not downregulate the plasma membrane P-gp level nor inhibit P-gp ATPase. It was not a transport substrate of P-gp. A pharmacokinetic study revealed that the intraperitoneal administration of 30 mg/kg of EC31 could achieve a plasma concentration above its in vitro EC50 (94 nM) for more than 18 h. It did not affect the pharmacokinetic profile of coadministered paclitaxel. In the xenograft model of the P-gp-overexpressing LCC6MDR cell line, EC31 reversed P-gp-mediated paclitaxel resistance and inhibited tumor growth by 27.4 to 36.1% (p < 0.001). Moreover, it also increased the intratumor paclitaxel level in the LCC6MDR xenograft by 6 fold (p < 0.001). In both murine leukemia P388ADR and human leukemia K562/P-gp mice models, the cotreatment of EC31 and doxorubicin significantly prolonged the survival of the mice (p < 0.001 and p < 0.01) as compared to the doxorubicin alone group, respectively. Our results suggested that EC31 was a promising candidate for further investigation on combination therapy for treating P-gp-overexpressing cancers.


Assuntos
Antineoplásicos , Neoplasias da Mama , Catequina , Leucemia , Animais , Feminino , Humanos , Camundongos , Antineoplásicos/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos , Xenoenxertos , Leucemia/tratamento farmacológico , Paclitaxel/farmacologia , Polifenóis/farmacologia , Chá
4.
Artigo em Inglês | MEDLINE | ID: mdl-33685890

RESUMO

We have designed, synthesized, and characterized a library of 38 novel flavonoid compounds linked with amines. Some of these amine-linked flavonoids have potent in vitro activity against parasites that cause cutaneous leishmaniasis, a tropical disease endemic in 80 countries worldwide. The most promising candidate, FM09h, was highly active with IC50 of 0.3 µM against L. amazonensis, L. tropica and L. braziliensis amastigotes. It was metabolically stable (39% and 66% of FM09h remaining after 30-minute incubation with human and rat liver microsomes respectively). In L. amazonensis LV78 cutaneous leishmaniasis mouse model, intralesional injection of FM09h (10 mg/kg, once every 4 days for 8 times) demonstrated promising effect in reducing the footpad lesion thickness by 72%, displaying an efficacy comparable to SSG (63%).

5.
Int J Mol Sci ; 23(23)2022 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-36499627

RESUMO

Biotransformation of flavonoid dimer FD18 resulted in an active metabolite FM04. It was more druggable because of its improved physicochemical properties. FM04 (EC50 = 83 nM) was 1.8-fold more potent than FD18 in reversing P-glycoprotein (P-gp)-mediated paclitaxel (PTX) resistance in vitro. Similar to FD18, FM04 chemosensitized LCC6MDR cells towards multiple anticancer drugs by inhibiting the transport activity of P-gp and restoring intracellular drug levels. It stimulated the P-gp ATPase by 3.3-fold at 100 µM. Different from FD18, FM04 itself was not a transport substrate of P-gp and presumably, it cannot work as a competitive inhibitor. In the human melanoma MDA435/LCC6MDR xenograft, the co-administration of FM04 (28 mg/kg, I.P.) with PTX (12 mg/kg, I.V.) directly modulated P-gp-mediated PTX resistance and caused a 56% (*, p < 0.05) reduction in tumor volume without toxicity or animal death. When FM04 was administered orally at 45 mg/kg as a dual inhibitor of P-gp/CYP2C8 or 3A4 enzymes in the intestine, it increased the intestinal absorption of PTX from 0.2% to 14% in mice and caused about 57- to 66-fold improvement of AUC as compared to a single oral dose of PTX. Oral co-administration of FM04 (45 mg/kg) with PTX (40, 60 or 70 mg/kg) suppressed the human melanoma MDA435/LCC6 tumor growth with at least a 73% (***, p < 0.001) reduction in tumor volume without serious toxicity. Therefore, FM04 can be developed into a novel combination chemotherapy to treat cancer by directly targeting the P-gp overexpressed tumors or potentiating the oral bioavailability of P-gp substrate drugs.


Assuntos
Melanoma , Paclitaxel , Humanos , Camundongos , Animais , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Flavonoides/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Resistencia a Medicamentos Antineoplásicos , Melanoma/tratamento farmacológico
6.
Int J Mol Sci ; 23(21)2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36362047

RESUMO

Overexpression of breast cancer resistance transporter (BCRP/ABCG2) in cancers has been explained for the failure of chemotherapy in clinic. Inhibition of the transport activity of BCRP during chemotherapy should reverse multidrug resistance. In this study, a triazole-bridged flavonoid dimer Ac15(Az8)2 was identified as a potent, nontoxic, and selective BCRP inhibitor. Using BCRP-overexpressing cell lines, its EC50 for reversing BCRP-mediated topotecan resistance was 3 nM in MCF7/MX100 and 72 nM in S1M180 in vitro. Mechanistic studies revealed that Ac15(Az8)2 restored intracellular drug accumulation by inhibiting BCRP-ATPase activity and drug efflux. It did not down-regulate the cell surface BCRP level to enhance drug retention. It was not a transport substrate of BCRP and showed a non-competitive relationship with DOX in binding to BCRP. A pharmacokinetic study revealed that I.P. administration of 45 mg/kg of Ac15(Az8)2 resulted in plasma concentration above its EC50 (72 nM) for longer than 24 h. It increased the AUC of topotecan by 2-fold. In an in vivo model of BCRP-overexpressing S1M180 xenograft in Balb/c nude mice, it significantly reversed BCRP-mediated topotecan resistance and inhibited tumor growth by 40% with no serious body weight loss or death incidence. Moreover, it also increased the topotecan level in the S1M180 xenograft by 2-fold. Our results suggest that Ac15(Az8)2 is a promising candidate for further investigation into combination therapy for treating BCRP-overexpressing cancers.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Antineoplásicos , Resistencia a Medicamentos Antineoplásicos , Animais , Humanos , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/química , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Linhagem Celular Tumoral , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Camundongos Nus , Proteínas de Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Topotecan/farmacologia , Flavonoides/farmacologia , Triazóis/farmacologia
7.
Eur J Med Chem ; 226: 113795, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34597896

RESUMO

P-glycoprotein (P-gp; ABCB1)-mediated drug efflux causes multidrug resistance in cancer. Previous synthetic methylated epigallocatechin (EGC) possessed promising P-gp modulating activity. In order to further improve the potency, we have synthesized some novel stereoisomers of methylated epigallocatechin (EGC) and gallocatechin (GC) as well as epicatechin (EC) and catechin (C). The (2R, 3S)-trans-methylated C derivative 25 and the (2R, 3R)-cis-methylated EC derivative 31, both containing dimethyoxylation at ring B, tri-methoxylation at ring D and oxycarbonylphenylcarbamoyl linker between ring D and C3, are the most potent in reversing P-gp mediated drug resistance with EC50 ranged from 32 nM to 93 nM. They are non-toxic to fibroblast with IC50 > 100 µM. They can inhibit the P-gp mediated drug efflux and restore the intracellular drug concentration to a cytotoxic level. They do not downregulate surface P-gp protein level to enhance drug retention. They are specific for P-gp with no or low modulating activity towards MRP1- or BCRP-mediated drug resistance. In summary, methylated C 25 and EC 31 derivatives represent a new class of potent, specific and non-toxic P-gp modulator.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Antineoplásicos/farmacologia , Catequina/análogos & derivados , Catequina/farmacologia , Doxorrubicina/farmacologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Antineoplásicos/síntese química , Antineoplásicos/química , Catequina/síntese química , Catequina/química , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Metilação , Estrutura Molecular , Estereoisomerismo , Relação Estrutura-Atividade
8.
J Med Chem ; 64(19): 14311-14331, 2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34606270

RESUMO

We synthesize various substituted triazole-containing flavonoids and identify potent, nontoxic, and highly selective BCRP inhibitors. Ac18Az8, Ac32Az19, and Ac36Az9 possess m-methoxycarbonylbenzyloxy substitution at C-3 of the flavone moiety and substituted triazole at C-4' of the B-ring. They show low toxicity (IC50 toward L929 > 100 µM), potent BCRP-inhibitory activity (EC50 = 1-15 nM), and high BCRP selectivity (BCRP selectivity over MRP1 and P-gp > 67-714). They inhibit the efflux activity of BCRP, elevate the intracellular drug accumulation, and restore the drug sensitivity of BCRP-overexpressing cells. Like Ko143, Ac32Az19 remarkably exhibits a 100% 5D3 shift, indicating that it can bind and cause a conformational change of BCRP. Moreover, it significantly reduces the abundance of functional BCRP dimers/oligomers by half to retain more mitoxantrone in the BCRP-overexpressing cell line and that may account for its inhibitory activity. They are promising candidates to be developed into combination therapy to overcome MDR cancers with BCRP overexpression.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Antineoplásicos/farmacologia , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Flavonoides/farmacologia , Proteínas de Neoplasias/antagonistas & inibidores , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/química , Anticorpos Monoclonais/imunologia , Antineoplásicos/química , Flavonoides/química , Células HEK293 , Humanos , Mitoxantrona/farmacologia , Proteínas de Neoplasias/química , Relação Estrutura-Atividade , Especificidade por Substrato
9.
Front Immunol ; 12: 679184, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34276666

RESUMO

Macrophages play an important role in the host defense mechanism. In response to infection, macrophages activate a genetic program of pro-inflammatory response to kill any invading pathogen, and initiate an adaptive immune response. We have identified RUVBL2 - an ATP-binding protein belonging to the AAA+ (ATPase associated with diverse cellular activities) superfamily of ATPases - as a novel regulator in pro-inflammatory response of macrophages. Gene knockdown of Ruvbl2, or pharmacological inhibition of RUVBL1/2 activity, compromises type-2 nitric oxide synthase (Nos2) gene expression, nitric oxide production and anti-bacterial activity of mouse macrophages in response to lipopolysaccharides (LPS). RUVBL1/2 inhibitor similarly inhibits pro-inflammatory response in human monocytes, suggesting functional conservation of RUVBL1/2 in humans. Transcriptome analysis further revealed that major LPS-induced pro-inflammatory pathways in macrophages are regulated in a RUVBL1/2-dependent manner. Furthermore, RUVBL1/2 inhibition significantly reduced the level of histone H3K4me3 at the promoter region of Nos2 and Il6, two prototypical pro-inflammatory genes, and diminished the recruitment of NF-kappaB to the corresponding enhancers. Our study reveals RUVBL1/2 as an integral component of macrophage pro-inflammatory responses through epigenetic regulations, and the therapeutic potentials of RUVBL1/2 inhibitors in the treatment of diseases caused by aberrant activation of pro-inflammatory pathways.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/metabolismo , Proteínas de Transporte/metabolismo , DNA Helicases/metabolismo , Histonas/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Complexos Multiproteicos/metabolismo , ATPases Associadas a Diversas Atividades Celulares/genética , Animais , Proteínas de Transporte/genética , Citocinas/metabolismo , DNA Helicases/genética , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos/imunologia , Metilação , Camundongos , Óxido Nítrico/metabolismo , Processamento de Proteína Pós-Traducional , Células RAW 264.7
10.
Mol Cancer Ther ; 20(1): 76-84, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33268570

RESUMO

Staphylococcal nuclease domain-containing protein 1 (SND1) is a multifunctional oncoprotein overexpressed in breast cancer. Binding of metadherin (MTDH) to SND1 results in the stabilization of SND1 and is important in the initiation and progression of breast cancer. Disruption of such interaction is a potential therapeutic for breast cancer. SN1/2 domain of SND1 was used as bait in a phage display screening to identify a 12-amino acid peptide 4-2. The activity of peptide 4-2 was evaluated by ELISA, coimmunoprecipitation, MTS, Western blot analysis, and xenograft mouse model. Peptide 4-2 could disrupt SND1-MTDH interaction. Cell penetrating derivative of peptide 4-2 (CPP-4-2) could penetrate and kill breast cancer cells by disrupting SND1-MTDH interaction and degrading SND1. Tryptophan 10 (W10) of peptide 4-2 was essential in mediating cytotoxicity, SND1 interaction, SND1-MTDH disruption, and SND1 degradation. CPP-4-2 could inhibit the growth of breast cancer in a xenograft mouse model. The SND1-interacting peptide 4-2 could kill breast cancer cells both in vitro and in vivo by interacting with SND1, disrupting SND1-MTDH interaction, and inducing SND1 degradation. W10 was an essential amino acid in the activity of peptide 4-2.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Endonucleases/metabolismo , Proteínas de Membrana/metabolismo , Peptídeos/farmacologia , Proteólise , Proteínas de Ligação a RNA/metabolismo , Animais , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Técnicas de Visualização da Superfície Celular , Regulação para Baixo/efeitos dos fármacos , Feminino , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Modelos Biológicos , Ligação Proteica/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Triptofano/metabolismo
11.
Mol Carcinog ; 59(10): 1209-1226, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32835442

RESUMO

Sal-like protein 4 (SALL4) is overexpressed in breast cancer and might contribute to breast cancer progression, but the molecular mechanism remains unknown. Here, we found that within a group of 371 ethnic Chinese breast cancer patients, SALL4 was associated with lower grade (P = .002) and progesterone receptor positivity (P = .004) for overall cases; lower Ki67 (P = .045) and high vimentin (P = .007) for luminal cases. Patients with high SALL4 expression in lymph node metastasis showed a significantly worse survival than those with low expression. Knockout of SALL4 in a triple-negative breast cancer cell line MDA-MB-231-Red-FLuc-GFP led to suppressed ability in proliferation, clonogenic formation, migration, and mammosphere formation in vitro, tumorigenicity and lung colonization in vivo. On the other hand, overexpression of SALL4 enhanced migration and mammosphere formation in vitro and tumorigenicity in vivo. Mechanistically, there was a positive correlation between SALL4 expression and mesenchymal markers including Zinc finger E-box binding homeobox 1 (ZEB1), vimentin, Slug, and Snail in vivo. Chromatin immunoprecipitation experiment indicated that SALL4 can bind to the promoter region of vimentin (-778 to -550 bp). Taken together, we hypothesize that SALL4 promotes tumor progression in breast cancer by inducing the mesenchymal markers like vimentin through directly binding to its promoter. Increased SALL4 level in metastatic lymph node relative to the primary site is an important poor survival marker in breast cancer.


Assuntos
Biomarcadores Tumorais/metabolismo , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/secundário , Fatores de Transcrição/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Apoptose , Biomarcadores Tumorais/genética , Movimento Celular , Proliferação de Células , Feminino , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Invasividade Neoplásica , Prognóstico , Fatores de Transcrição/genética , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto , Adulto Jovem
12.
J Med Chem ; 62(18): 8578-8608, 2019 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-31465686

RESUMO

The present work describes the syntheses of diverse triazole bridged flavonoid dimers and identifies potent, nontoxic, and highly selective BCRP inhibitors. A homodimer, Ac22(Az8)2, with m-methoxycarbonylbenzyloxy substitution at C-3 of the flavone moieties and a bis-triazole-containing linker (21 atoms between the two flavones) showed low toxicity (IC50 toward L929, 3T3, and HFF-1 > 100 µM), potent BCRP-inhibitory activity (EC50 = 1-2 nM), and high BCRP selectivity (BCRP selectivity over MRP1 and P-gp > 455-909). Ac22(Az8)2 inhibits BCRP-ATPase activity, blocks the drug efflux activity of BCRP, elevates the intracellular drug accumulation, and finally restores the drug sensitivity of BCRP-overexpressing cells. It does not down-regulate the surface BCRP protein expression to enhance the drug retention. Therefore, Ac22(Az8)2 and similar flavonoid dimers appear to be promising candidates for further development into combination therapy to overcome MDR cancers with BCRP overexpression.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Antineoplásicos/farmacologia , Flavonoides/farmacologia , Proteínas de Neoplasias/antagonistas & inibidores , Triazóis/química , Células 3T3 , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/química , Animais , Antineoplásicos/química , Simulação por Computador , Cobre/química , Dimerização , Desenho de Fármacos , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Flavonas/química , Flavonoides/química , Células HEK293 , Humanos , Camundongos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/antagonistas & inibidores , Proteínas Associadas à Resistência a Múltiplos Medicamentos/química
13.
Biomaterials ; 217: 119286, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31284125

RESUMO

Antimicrobial peptides (AMPs) have recently attracted great attention due to their rapid action, broad spectrum of activity, and low propensity of resistance development. The successful application of AMPs in the treatment of intracellular infections, however, remains a challenge because of their low penetration efficiency into the pathogen's intracellular niche. Herein, we report that sub-micrometer-sized crystals of the protein Cry3Aa formed within Bacillus thuringiensis are readily and specifically taken up by macrophages. We demonstrate that these protein crystals efficiently encapsulate a known antileishmanial peptide, dermaseptin S1 (DS1), and thereby promote improved cellular uptake of DS1 and its lysosomal accumulation in macrophages. Notably, this targeted delivery of DS1 results in enhanced in vitro and in vivo antileishmanial activity, as well as reduced toxicity to the host macrophages. These findings suggest that the Cry3Aa crystal can be an effective delivery platform for AMPs to treat intramacrophage infections.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Proteínas de Bactérias/química , Sistemas de Liberação de Medicamentos , Endotoxinas/química , Proteínas Hemolisinas/química , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/parasitologia , Proteínas de Anfíbios/farmacologia , Animais , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/toxicidade , Proteínas de Bactérias/ultraestrutura , Linhagem Celular Tumoral , Endotoxinas/toxicidade , Feminino , Proteínas Hemolisinas/toxicidade , Proteínas Hemolisinas/ultraestrutura , Hemólise/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Leishmania/efeitos dos fármacos , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Camundongos Endogâmicos BALB C
14.
Curr Med Chem ; 26(25): 4799-4831, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30277144

RESUMO

P-glycoprotein, also known as ABCB1 in the ABC transporter family, confers the simultaneous resistance of metastatic cancer cells towards various anticancer drugs with different targets and diverse chemical structures. The exploration of safe and specific inhibitors of this pump has always been the pursuit of scientists for the past four decades. Naturally occurring flavonoids as benzopyrone derivatives were recognized as a class of nontoxic inhibitors of P-gp. The recent advent of synthetic flavonoid dimer FD18, as a potent P-gp modulator in reversing multidrug resistance both in vitro and in vivo, specifically targeted the pseudodimeric structure of the drug transporter and represented a new generation of inhibitors with high transporter binding affinity and low toxicity. This review concerned the recent updates on the structure-activity relationships of flavonoids as P-gp inhibitors, the molecular mechanisms of their action and their ability to overcome P-gp-mediated MDR in preclinical studies. It had crucial implications on the discovery of new drug candidates that modulated the efflux of ABC transporters and also provided some clues for the future development in this promising area.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Flavonoides/farmacologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Flavonoides/química , Humanos , Estrutura Molecular , Relação Estrutura-Atividade
15.
J Med Chem ; 61(22): 9931-9951, 2018 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-30351934

RESUMO

A 300-member flavonoid dimer library of multidrug resistance-associated protein 1 (MRP1, ABCC1) modulators was rapidly assembled using "click chemistry". Subsequent high-throughput screening has led to the discovery of highly potent (EC50 ranging from 53 to 298 nM) and safe (selective indexes ranging from >190 to >1887) MRP1 modulators. Some dimers have potency about 6.5- to 36-fold and 64- to 358-fold higher than the well-known MRP1 inhibitors, verapamil, and MK571, respectively. They inhibited DOX efflux and restored intracellular DOX concentration. The most potent modulator, Ac3Az11, was predicted to bind to the bipartite substrate-binding site of MRP1 in a competitive manner. Moreover, it provided sufficient concentration to maintain its plasma level above its in vitro EC50 (53 nM for DOX) for about 90 min. Overall, we demonstrate that "click chemistry" coupled with high throughput screening is a rapid, reliable, and efficient tool in the discovery of compounds having potent MRP1-modualting activity.


Assuntos
Dimerização , Desenho de Fármacos , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Flavonoides/química , Flavonoides/farmacologia , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Alcinos/química , Animais , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Azidas/química , Linhagem Celular Tumoral , Química Click , Doxorrubicina/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Flavonoides/metabolismo , Flavonoides/farmacocinética , Humanos , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Camundongos , Simulação de Acoplamento Molecular , Proteínas Associadas à Resistência a Múltiplos Medicamentos/química , Conformação Proteica
16.
Eur J Med Chem ; 125: 795-806, 2017 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-27750197

RESUMO

In the present study, a total of 25 novel ningalin B analogues were synthesized and evaluated for their P-gp modulating activity in a P-gp overexpressed breast cancer cell line LCC6MDR. Preliminary structure-activity study shows that A ring and its two methoxy groups are important pharmacophores for P-gp inhibiting activity. Among all derivatives, 23 is the most potent P-gp modulator with EC50 of 120-165 nM in reversing paclitaxel, DOX, vinblastine and vincristine resistance. It is relatively safe to use with selective index at least greater than 606 compared to verapamil. Mechanistic study demonstrates that compound 23 reverses P-gp mediated drug resistance by inhibiting transport activity of P-gp, thereby restoring intracellular drug accumulation. In summary, our study demonstrates that ningalin B analogue 23 is a non-cytotoxic and effective P-gp chemosensitizer that can be used in the future for reversing P-gp mediated clinical cancer drug resistance.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/antagonistas & inibidores , Compostos Heterocíclicos com 3 Anéis/química , Subfamília B de Transportador de Cassetes de Ligação de ATP/efeitos dos fármacos , Transportadores de Cassetes de Ligação de ATP/efeitos dos fármacos , Organismos Aquáticos/química , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Compostos Heterocíclicos com 3 Anéis/farmacologia , Humanos , Relação Estrutura-Atividade
17.
Bioorg Chem ; 70: 100-106, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27939960

RESUMO

In the present study, we have reported synthesis and biological evaluation of a series of fifteen 1-(thiophen-2-yl)-9H-pyrido[3,4-b]indole derivatives against both promastigotes and amastigotes of Leishmania parasites responsible for visceral (L. donovani) and cutaneous (L. amazonensis) leishmaniasis. Among these reported analogues, compounds 7b, 7c, 7f, 7g, 7i, 7j, 7m, 7o displayed potent activity (15.55, 7.70, 7.00, 3.80, 14.10, 9.25, 3.10, 4.85µM, respectively) against L. donovani promastigotes than standard drugs miltefosine (15.70µM) and pentamidine (32.70µM) with good selectivity index. In further, in-vitro evaluation against amastigote forms, two compounds 7g (8.80µM) and 7i (7.50µM) showed significant inhibition of L. donovani amastigotes. Standard drug amphotericin B is also used as control to compare inhibition potency of compounds against both promastigote (0.24µM) and amastigote (0.05µM) forms.


Assuntos
Antiprotozoários/química , Antiprotozoários/farmacologia , Indóis/química , Indóis/farmacologia , Leishmania/efeitos dos fármacos , Tiofenos/química , Tiofenos/farmacologia , Animais , Células Cultivadas , Humanos , Leishmania donovani/efeitos dos fármacos , Leishmaniose/tratamento farmacológico , Leishmaniose/parasitologia , Macrófagos/parasitologia , Camundongos
18.
Clin Microbiol Rev ; 28(4): 987-1004, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26354822

RESUMO

Visceral leishmaniasis (VL) caused by Leishmania spp. is an important vector-borne and largely zoonotic disease. In China, three epidemiological types of VL have been described: anthroponotic VL (AVL), mountain-type zoonotic VL (MT-ZVL), and desert-type ZVL (DT-ZVL). These are transmitted by four different sand fly species: Phlebotomus chinensis, P. longiductus, P. wui, and P. alexandri. In 1951, a detailed survey of VL showed that it was rampant in the vast rural areas west, northwest, and north of the Yangtze River. Control programs were designed and implemented stringently by the government at all administrative levels, resulting in elimination of the disease from most areas of endemicity, except the western and northwestern regions. The control programs consisted of (i) diagnosis and chemotherapy of patients, (ii) identification, isolation, and disposal of infected dogs, and (iii) residual insecticide indoor spraying for vector control. The success of the control programs is attributable to massive and effective mobilization of the general public and health workers to the cause. Nationally, the annual incidence is now very low, i.e., only 0.03/100,000 according to the available 2011 official record. The overwhelming majority of cases are reported from sites of endemicity in the western and northwestern regions. Here, we describe in some depth and breadth the current status of epidemiology, diagnosis, treatment, and prevention of the disease, with particular reference to the control programs. Pertinent information has been assembled from scattered literature of the past decades in different languages that are not readily accessible to the scientific community. The information provided constitutes an integral part of our knowledge on leishmaniasis in the global context and will be of special value to those interested in control programs.


Assuntos
Doenças Endêmicas , Leishmaniose Visceral/prevenção & controle , Animais , China/epidemiologia , Reservatórios de Doenças , Doenças do Cão/parasitologia , Doenças do Cão/prevenção & controle , Doenças do Cão/transmissão , Cães , Humanos , Insetos Vetores , Leishmaniose Visceral/epidemiologia , Leishmaniose Visceral/parasitologia , Leishmaniose Visceral/transmissão
19.
Bioorg Med Chem ; 23(17): 5566-73, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26233798

RESUMO

In the present study, a total of 9 novel permethyl ningalin B analogs have been synthesized and evaluated for their P-gp modulating activity in a P-gp overexpressed breast cancer cell line LCC6MDR. Among these derivatives, compound 12 with dimethoxy groups at rings A and B and tri-substitution at ring C with ortho-methoxyethylmorpholine, meta-bromo and para-benzyloxy groups displays the most potent P-gp modulating activity with EC50 of 423 nM to reverse paclitaxel resistance. It is non-toxic towards L929 fibroblast with IC50 greater than 100 µM and with selective index greater than 236. Its mechanism to reverse P-gp mediated drug resistance is by virtue of inhibiting transport activity of P-gp, restoring intracellular drug accumulation and eventually chemosensitizing the cancer cells to anticancer drug again. Moreover, compound 12 showed better solubility (405 ng/mL) than hit compound 1 in phosphate buffer (pH 4.0). In summary, our study demonstrates that permethyl ningalin B derivative 12 is non-toxic and efficient P-gp inhibitor that is a potential candidate to be used clinically to reverse P-gp mediated cancer drug resistance.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/antagonistas & inibidores , Transportadores de Cassetes de Ligação de ATP/metabolismo , Compostos Heterocíclicos com 3 Anéis/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Linhagem Celular Tumoral , Resistência a Múltiplos Medicamentos , Humanos , Estrutura Molecular , Relação Estrutura-Atividade
20.
Mol Pharm ; 12(10): 3507-17, 2015 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-26291333

RESUMO

Flavonoid dimer FD18 is a new class of dimeric P-gp modulator that can reverse cancer drug resistance. FD18 is a potent (EC50 = 148 nM for paclitaxel), safe (selective index = 574), and selective P-glycoprotein (P-gp) modulator. FD18 can modulate multidrug resistance toward paclitaxel, vinblastine, vincristine, doxorubicin, daunorubicin, and mitoxantrone in human breast cancer LCC6MDR in vitro. FD18 (1 µM) can revert chemosensitivity of LCC6MDR back to parental LCC6 level. FD18 was 11- to 46-fold more potent than verapamil. FD18 (1 µM) can increase accumulation of doxorubicin by 2.7-fold, daunorubicin (2.1-fold), and rhodamine 123 (5.2-fold) in LCC6MDR. FD18 inhibited P-gp-mediated doxorubicin efflux and has no effect on influx. FD18 at 1 µM did not affect the protein expression level of P-gp. Pharmacokinetics studies indicated that intraperitoneal administration of 45 mg/kg FD18 was enough to maintain a plasma level above EC50 (148 nM) for more than 600 min. Toxicity studies with FD18 (90 mg/kg, i.p. for 12 times in 22 days) with paclitaxel (12 mg/kg, i.v. for 12 times in 22 days) revealed no obvious toxicity or death in mice. In vivo efficacy studies indicated that FD18 (45 mg/kg, i.p. for 12 times in 22 days) together with paclitaxel (12 mg/kg, i.v. for 12 times in 22 days) resulted in a 46% reduction in LCC6MDR xenograft volume (n = 11; 648 ± 84 mm(3)) compared to paclitaxel control (n = 8; 1201 ± 118 mm(3)). There were no animal deaths or significant drop in body weight and vital organ wet weight. FD18 can increase paclitaxel accumulation in LCC6MDR xenograft by 1.8- to 2.2-fold. The present study suggests that FD18 represents a new class of safe and potent P-gp modulator in vivo.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Flavonas/uso terapêutico , Flavonoides/uso terapêutico , Animais , Antineoplásicos/efeitos adversos , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Western Blotting , Linhagem Celular Tumoral , Feminino , Flavonas/efeitos adversos , Flavonas/farmacocinética , Flavonas/farmacologia , Flavonoides/farmacologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Transplante de Neoplasias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...